

Dirt Hugger. Organic compost co. - or / wa

Dirt Hugger Permitting

Background and History
Permitting Experience
Take Aways & Reflections

2010-2014 BLACK GOLD MINE

The New Location in Dallesport, WA

Permitting Experience

- Permits Required
 - ✓ SEPA 100K TPY
 - Land Use Variance
 - Conditional Use Permit
 - ✓ Solid Waste 100k TPY
 - Water Quality
 - ✔ Air Quality 100k TPY

	Dirt Hugger Air Quality Permitting Timeline		
Date	Event	Costs	Payee
10/17/2016	AQ permit modificaton received by Ecology	\$875	
6/26/2017	Follow up- Ecology suggests not processing the 50k TPY permit so that a 100k TPY permit may be submitted		
9/12/2018	2nd Air Quality Permit Application Received	\$625	CRO AQ
1/29/2019	AERSCREEN modeling is requested	\$1,500	laude Williams PE
2/5/2019	AERMOD modeling is requested	\$5,000	Ramboll
3/19/2019	Tier 2 review is required by AQ.	\$1,000	DOE
5/9/2019	Draft NOC approval order delivered (review costs to date DOE)	\$11,027	CRO AQ
5/31/2019	AERMOD modeling is complete	\$22,212	Ramboll
6/13/2019	ORIA assistance. Internal review by DOE		
9/17/2019	Final Permit Issued (DOE AQ 232 hours)	\$22,665	CRO AQ
Budgeted Costs		\$875	CRO AQ
Actual Costs	(DH 330 hours on permit)	\$48,877	

Sticking Points

- 1. VOC EFs (80% of time on this)
 - 1. SJVACD 2010 vs CARB 2015 & Maricopa 2018
 - 2. Public Records Requests
 - 3. Composting Experts (John Cleary, ECS, GMT)
- 2. On Site Testing
- 3. Capping Material
- 4. BMP vs BACT
- 5. Engines non-road vs stationary

Site	Sampling Age of Material	Season Samples Taken	EF (Ib-VOC/wet ton)
CIWMB (Modesto)	Over the Active +	Fall	0.85*
Site X	Curing Phase (days	Spring	6.30
NorCal Jepson Prairie (Vacaville)	not sampled were interpolated)	Summer	5.65
Northern Recycling (Zamora)		Spring	10.03
	Average		5.71

sites; however, 0.85 was the actual value reported from this test site and will be used in the EF determination.

Site	Sampling Age of Material	Season Samples Taken	EF (Ib-VOC/wet ton)		
CIWMB (Modesto)	Over the Active +	Fall	0.85*		
Site X	Curing Phase (days not sampled were interpolated)	Spring	6.30		
NorCal Jepson Prairie (Vacaville)		Summer	5.65		
Northern Recycling (Zamora)		Spring	10.03		
	Average				

*1.54 was identified in the green waste report after a recalculation to better represent other sites; however, 0.85 was the actual value reported from this test site and will be used in the EF determination.

Public Records Request

Facility Name	VOC (lbs/ton)	Volume	Units	Tons	Feedstock	Stockpile EF	VOC (lbs/ton)	NH3 (lbs/ton)
Stemilt	1.626	30000	CY	7,143	1,11, 111	0	1.626	N/A
Kittitas	2.85	n/a		6,000	1, 11	0	2.85	- C2
Chelan Co Compost	0.64	1000		1,500	i, II, sludge	0	0.64	
Entiat	1.78	n/a	i i	7,000	biosolids	0	1.78	1.43
Average	1.72						1.72	
Lbs/ Year @ 100k TPY							172,346	
DH @ 100k TPY							86.17	
Order of manitude high	ner DOE recomme	ended vs CRO).				3.31	

From: Tim O'Neill Sent: Monday, July 23, 2018 11:21 AM To: Vicente, Ryan (ECY) <<u>rvic461@ECY.WA.GOV</u>> Subject: RE: Emission factor documents

Hello Ryan,

I got permission this a.m. from one of the site owners to send you the study. Please find it here attached. The study was conducted on aerated static piles with a 6"-12" bio-layer that were composting a very rich mix (40%FW + 60% GW) over a pipe-ongrade aeration floor (which we supplied) that could provide a semi-uniform air flow. Nonetheless the overall VOC emissions from the active composting process was measured at 1.6 lb VOC/wet ton and from the curing phase at 0.4 lb VOC/wet ton. A more uniform and highly aerated agitated composting process, such as the one at Dirt Hugger, will convert more of the bio-available carbon into CO2, and less into VOCs. The result will be lower life-cycle VOC emissions.

If/when I get permission from the other facility operator I will forward that study as well.

Let me know if you'd like to discuss this further.

Best regards,

Tim O'Neill President Engineered Compost Systems O: 206.634.2625

S Composting

USCC Position Paper: VOC Emissions from Composting

The types and volumes of VOCs emitted from properly operated commercial composting facilities are naturally occurring (biogenic) and do not pose significant risk to the formation of ground level ozone

> There is currently no evidence that, where they have been implemented, costly emission reduction requirements for composting operations have resulted in any improvement towards attaining Clean Air Act goals. Composting is in fact recognized by the EPA as an environmentally beneficial process, stating that the "composting process has been shown to absorb odors and treat

Feedstock Throughput

Category	Annual (tpy)
Existing	25,000
Increase	37,633
Proposed	62,633

Total VOC Potential to Emit (PTE)

Period	Uncontrolled	Controlled	Units
Existing (compost)	71.4		tpy
Engines	1.718	1.718	tpy
Proposed	226.4	99.99	tpy

Composting VOC PTE (annual)

Period	Uncontrolled	Controlled	Units	
Stockpile ¹	45.83	11.46	tpy	
Active Phase	125.17	2.50	tpy	
Biofilter	0.00	30.67	tpy	
Curing Phase	53.65	53.65	tpy	
¹ Stockpile exists:	153	days/yr	1	

Utilized Emission Factors

Pollutant	Value	Units
NH ₃ - stockpile	0.0968	lb / wet ton /day
NH ₃ - windrow	1.01	lb / wet ton
VOC - stockpile	0.269	lb / wet ton /day
VOC - windrow	5.71	lb / wet ton

Negative Aeration Capture Efficiency

Pollutant ¹		Value		Units
any	- 31	98%	1	107

¹ Assumed

Control/Destruction Efficiencies

Pollutant	Value	Units
NHa	21.8%	lb / ton throughput
VOC	75%	lb / ton throughput

Maximum Onsite Capacity

Category	-	Peak Onsite ¹ (tons)	
Stockpile	İ	2,231	
¹ Compost density:		0.5	ton/yd3

Total NH₃ PTE

Period	Uncontrolled	Controlled	Units
Existing	25,250	-	lb/yr
Proposed	96,288	79,665	lb/yr

Composting NH₃ PTE (annual)

Un	controlled	Controlled	Units
T.	33,028	25,845	lb/yr
	44,281	886	lb/yr
	0	33,957	lb/yr
	18,978	18,978	lb/yr
	Un	Uncontrolled 33,028 44,281 0 18,978	Uncontrolled Controlled 33,028 25,845 44,281 886 0 33,957 18,978 18,978

Emissions Distribution

Phase	Emissions (%)	Duration
Active (primary)	70%	Initial 14 days
Curing (secondary)	30%	Remaining time

5. Email from Annie Klinke on 6/12/2019.

Sticking Points

1. VOC EF's

- 2. On Site Testing
 - 1. No, Yes, But...
 - 2. 25.3 vs TO12 vs Other...?

3. Capping Material

- 1. Screened Finished Compost (\$\$\$, fuel, labor)
- 2. Unscreened Finished Compost (\$150k less)
- 3. Overs (20% capacity)

4. BMP vs BACT

- 1. Feedstocks & Operations
- 2. Building
- 5. Engines non-road vs stationary
 - 1. 6,901 gallons (74%) vs 2,476 gallons (26%)
 - 2. \$22k in modeling
 - 3. Loss of ability to experiment/innovate

May 2019

June 2019

the

Dirt Hugger Marginal Costs for Expansion Under New Permit	
Item	Cost
Marginal Capital Costs of Negative Aeration (vs. existing + air)	
North Pad	
Above Grade Manifolds & Biofilter Piping	\$84,000
Biofilter pad paving	\$23,100
Blower Increase for Negative	\$27,500
Retro Fit South Pad	
Above Grade Manifolds & Biofilter Piping	\$114,500
Biofilter pad paving	\$10,800
Labor for Install	\$26,125
Negative Aeration Engineering + Increased Permit Costs	\$46,378
Total CapEx	\$332,403
Total Expansion Project CapEx	\$1,517,919
Permit Increases in CapEx Costs	22%
Operational Costs (per year)	
Increased Power Consumption (negative is 3x more than +)	\$24,960
Biofilter Construction/Maintenance (2-3 yr cycle)	\$9,800
Biofilter footprint lease (\$150/mo)	\$1,800
Total OpEx	\$36,560
Debt Finance (4.69%)	\$8,228
Calculations	-
Increase in permitted capacity (40K TPY to 62.7K TPY)	22,700
CapEx Cost/Ton/5 Yr	\$2.93
OpEx Cost/Ton	\$2.0
Marginal Cost/Ton for Expanded Capacity	\$4.90

Reflections, Take Aways + Tips

- Same Goals
- More Front-End Alignment. Bring in Experts Earlier
 - Flow Chart for Permitting? Based on scale?
 - Reduced Cost Testing Protocol
- Standard WA EF's? At what cost?

We Are the Change

Process Transparency Consistency Across State Good Data! Macro vs Micro View - Ozone precursors/ Non-attainment - Biogenic - Opportunity Costs

IMPACTS Over 100,000 yards of product sold Over 160,000 tons composte 25 full time jobs created (4 per 10k TPY vs. 1) 17,899 tons CO2 Reduction/Year 2 million gallons gas 93 rail cars of coal 7 million propane bbq's 3200 cars